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Abstract--A theory is presented of a new heat propagation mechanism, thermal hydraulic quenchback 
(THQB), in large scale superconducting magnets. The underlying physics of THQB is discussed and an 
analytic solution for the quench propagation velocity is presented. This solution represents the first such 
result for THQB, and is shown to be in excellent agreement with the full numerical simulations of the 
governing mass, momentum, and energy conservation equations for the compressible flow of the coolant 
in the conduit. The THQB propagation velocity is observed to be as much as an order of magnitude greater 
than the hehum coolant velocity. This is in direct contrast to a standard quench where the two velocities 

are always essentially equal. 

1. INTRODUCTION 

There are a number of large government and indus- 
trial projects that utilize superconducting magnets. 
Such projects include the magnetic fusion exper- 
iments, high ener~;y particle accelerators, and mag- 
netically levitated public transportation (MAGLEV). 
These magnets ar,~ particularly useful in situations 
where high magnetic fields are required but economic 
or technological considerations limit the total steady 
state electrical power available. Because of the high 
construction costs involved, magnet protection in the 
event of faults is a crucial design element. One of the 
most serious faults is that of quenching, a situation 
wherein a local section of the magnet, because of some 
local heat perturb~.tion, returns to its normal state. If 
the perturbation is large enough, neighboring sections 
of the magnet are subsequently quenched. Late detec- 
tion of quench invariably causes irreversible damage 
to the magnet. The purpose of this paper is to present 
a theory of a new quench (heat) propagation mech- 
anism, thermal ihydraulic quenchback (THQB), 
observed in recent superconducting magnet quench 
experiments [1], The phenomenon occurs after the 
initiation of a 'standard' quench wherein the normal 
zone expands because of heat convection by the cool- 
ant. In certain circumstances a nearly explosive 
growth (by a factor on the order of 10) of the quench 
expansion velocity is suddenly observed at some point 
during the standard quench propagation. This highly 
enhanced propagation is known as thermal hydraulic 
quenchback. 

The analysis presented here applies to the class of 
superconducting magnets constructed with Cable-in- 
Conduit Conductors (CICC), where THQB has been 
observed. A CICC consists of a superconducting cable 
surrounded by sup,ercritical helium [2]. The helium is 
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used to cool the superconductor during steady state 
operation. The system of helium and cable is sur- 
rounded by a conduit generally made of stainless steel. 
Figure 1 shows a schematic diagram of the cross- 
section ofa CICC ; typically the conduit has an overall 
diameter of the order of a few centimeters, while the 
conductor has a length of several hundred meters. The 
superconducting cable itself consists of a large number 
of strands (20-500) that enhance the heat transfer 
between the cable and the helium. These strands are 
made of a superconducting alloy embedded in a cop- 
per matrix. The alloy remains in its superconducting 
state when its temperature T lies below a critical value 
Tcs. Above Tcs, the alloy has a very high electrical 
resistivity. The copper matrix is used to carry the 
current in the event that the temperature in a section 
of the cable is accidentally raised above Tcs. In such a 
situation the current flows preferentially through the 
copper matrix which acts as a parallel resistor to the 
high resistivity, 'quenched' section of the super- 
conducting alloy. This minimizes the Joule heating 
that would otherwise be present in the super- 
conducting alloy alone. Even so, because of the high 
current density flowing in the cable, it often takes only 
a few seconds for the quenched section of the cable 
to rise from its cryogenic temperature T ~ 5 K and 
pressurep ~ 5 atm to values of T ~ 250 K andp ~ 25 
arm. Past this point, irreversible damage to the magnet 
can occur. It is for this reason that understanding the 
process of quench propagation is of great importance 
in the construction of superconducting magnets. 

The process of quench in CICC is discussed in [2- 
6], and in [3, 7] it has been shown that the helium in 
the conduit is the main component that governs the 
propagation. In a standard quench, the most common 
case, propagation is due to the convection of helium 
in the conduit. Reference [7] presents analytic results 
for this type of quench propagation, including an 
expression for the velocity of the quench front. In 
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cross-sectional area 
specific heat at constant pressure 
specific heat of helium-conductor 
specific heat at constant volume 
(1/T)Op(p, T)/Op 
(1/p)Op(p, T)/c~T 
specific heat ratio used in equation (46) 
hydraulic diameter 
function plotted in Fig. 6 
friction factor 
Heaviside step function 
Heaviside-like function (Fig. 2) 
current density in the copper 
parameter given by equation (45) 

parameters used in equation (43) 
length of the channel 
initial length of quench zone 

parameter defined in equation (42) 
scale length defined in equation (19) 
helium pressure 
ideal gas constant 
Joule heating source 
entropy 
temperature 
critical temperature 
current sharing temperature 
maximum allowable temperature 
temperature margin defined in 
equation (26) 
T . - T .  
time 
onset time of THQB 

I m time scale to reach Tm 
u normalized velocity 
v helium velocity 
vs sound speed in helium 
Vq velocity of the THQB front 
Vqs velocity of the standard quench front 
w re-normalized velocity used in 

equation (46) 
x distance along the channel 
z moving coordinate system. 

Greek symbols 

q 

P 

40 

~0 

eigenvalue given by equation (23) 
eigenvalue of equation (46) 
small expansion parameter, equation 
(10) 
resistivity of copper 
density 
normalized moving coordinate system 
parameter given by equation (30) 
parameter given by equation (34) 
normalized temperature used in 
equation (46). 

Subscripts 
c denotes the conductor 
cu denotes the copper 
h denotes the helium 
0 denotes a background (zeroth order) 

quantity 
1 denotes a first order quantity. 

CONDUIT WALL 

\ SUPERCONDUCTOR 

HELIUM 

Fig. I. Schematic of thc cross-section of a CICC. 

this paper, we discuss a different quench propagation 
mechanism due to the compression of helium in the 
conduit. This compression, which is driven by the 
standard quench, can cause the helium temperature 
to go above T = T~ in regions where the helium is 
nearly stagnant. As is shown, when this occurs the 
quench velocity is highly enhanced (i.e. the front vel- 

ocity is much greater than the helium velocity) cor- 
responding to THQB. 

THQB has been observed in both numerical simu- 
lations [8, 9] and experiments [1]. Here, we present an 
explanation of the underlying physics of the process 
and derive an analytic expression for the velocity of 
the THQB normal front. The theory is shown to be in 
excellent agreement with new, more complete numeri- 
cal simulations. It is in qualitative agreement with the 
experiments but there are insufficient data available 
as of now to make detailed comparisons. 

2. THE GOVERNING MODEL 

Consider the flow of supercritical helium in the con- 
duit shown in Fig. 1. The radial length scale of the 
CICC has dimensions of ~ 0.1 m, while the length of 
the CICC is of the order of ~ 100 m. Therefore, use 
of one dimensional equations along the axial direction 
(x) of the CICC is well justified. For  simplicity of 
presentation the conduit wall is assumed to be sur- 
rounded by a perfect insulator implying that 
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n ' V T  = 0 on the conduit-insulator interface. Fur- 
thermore, the con6uit wall is assumed to be negligibly 
thin (these assumptions have no essential bearing on 
any of the results presented in the paper). 

Due to the smaZLl diameter of the strands, and the 
large heat transfer coefficient between the cable and 
the helium the temperatures of these components are 
nearly the same (this is particularly the case during 
quench time scales). Thus, it is possible to write a 
hybrid energy equation for the combined helium plus 
conductor system. In [6] the results of the hybrid equa- 
tion are shown to compare very well with models that 
maintain separate temperatures for the cable and the 
helium. With this in mind, the governing equations for 
the flow consist of mass and momentum conservation 
equations for the helium coolant, and the hybrid 
energy conservation equation for the helium-conduc- 
tor. These equations are given by [6] 

Op 0 
~ + ~x (w)  = o (1) 

Op fpvlvl 
(2) 

ax - 2dh 

OT OT c~v 
pCt ~ + pC,,V~x + pCaT~x 

= S O ( T -  T¢~)q fPlvlvZ (3) 
2a. 

p = p(p, T) (4) 

where in equatiorL (2) f ~ 0.08 is the friction factor, 
assumed to be a constant. The hydraulic diameter is 
defined as dh = 4Ah/Pw, where Ah is the cross-sectional 
area of the helium and Pw is the total wetted perimeter. 
Also, helium inertJia is neglected in this equation, since 
we are considering a low Mach number flow. 

In equation (3) the second and third terms on the 
left-hand side represent convection and compres- 
sibility, respectively. The last term on the right-hand 
side represents the viscous heating. The specific heat 
of helium at constant volume is denoted by Cv(p, T), 
and the compressibility coefficient Ca(p, T) =- 
(1/p)Op(p, T)/OT. Also observe that thermal con- 
duction in the axial direction has been neglected in 
equation (3) since for the class of problems under 
consideration its effect is small compared to convec- 
tion. The quantity Ct is the combined heat capacity of 
the helium and conductor, given by 

A¢ Pc 
c, = c~ + ~ ~ cc (5) 

where Ac and Ah denote the cross-sectional area of the 
conductor and the helium, respectively. Here, p° is the 
conductor density, and Co(T) is the heat capacity of 
the conductor which is a strong function of tempera- 
ture. Note that tbr T ~> 20 K, the contribution of 
the specific heat of the solid components becomes 
substantial and dominates Ct, while for T < 20 K the 
helium contribution to (7, is the dominant term. 

I-- 
Z'x- 

0 n. 
Tcs Tcr T 

Fig. 2. Functional dependence of/4(T-- To) appearing in 
equation (3). 

The heat source appearing in the energy equation 
is due to the Joule heating in the copper. This heating 
takes place in regions where the superconductor is in 
the 'normal '  (resistive) state, and is given by 

where Acu denotes the cross-sectional area of the 
copper. The quantity ~(T) is the resistivity of the 
copper, a strong function of the temperature in the 
range T ~> 20 K. In the temperature range T < 20 K, 
however, t /may be assumed to be a constant. Also, J 
is the current density in the copper, assumed to be 
constant. In equation (3), H(T-Tcs)  is a Heaviside- 
like function such as used in [2], and Tcs is the so 
called 'current-sharing' temperature, above which the 
superconductor begins to share its current with the 
copper matrix. The functional dependence of O is 
shown in Fig. 2. In the figure T~ is the 'critical' tem- 
perature at which point all of the current is carried in 
the copper matrix. The current sharing and the critical 
temperatures are functions of the magnetic field B. In 
the paper we assume that B is uniform and constant. 

In [6] it has been shown that equations (1)-(4) 
accurately describe quench propagation in CICC. In 
[7], several additional, well justified approximations 
are made, leading to a full analytic solution in the 
regime where the convection of helium is the dominant 
mechanism governing the propagation of heat 
(quench). In the next section we analyze a different 
quench propagation mechanism (THQB) which is due 
to the compression of the helium ahead of the initial 
quench zone. The propagation velocity in this case is 
shown to be greatly enhanced. 

3. QUALITATIVE EXPLANATION OF THQB 

During a standard quench, the front propagates 
away from the initial normal zone with a velocity 
Vqs ~ 1-10 m s -1. Behind the front, the helium tem- 
perature rises quickly, well above the value Ter, 
because of the Joule heating. Ahead of the front, there 
is no Joule heating and the helium remains essentially 
at its initial temperature To < Tes. Just ahead of the 
quench front, however, there is a slight increase in the 
temperature because of the compression of the helium 
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against the frictional drag force. A remarkable feature 
of the standard quench is that the temperature both 
behind and ahead of the front are independent of 
the values of Tcs and Tcr. In [7] it is shown that the 
temperature behind the standard quench front is 
mainly a function of the Joule heating S, while the 
temperature ahead of the front is a function of S as 
well as the friction f/dh, the initial normal length Lq, 
and time. This situation persists until the temperature 
of the compressed helium just ahead of the front 
finally reaches the value Tog. The Joule heating is then 
'switched on' ahead, as well as behind the front and it 
is this sudden increase in heating power that causes 
the near explosive growth in the quench propagation 
velocity known as THQB. 

The physical picture just described suggests the fol- 
lowing analytic approach to understanding THQB. 
Consider a CICC undergoing a standard quench event 
and assume that the temperature just ahead of the 
quench has reached the value Tcs. This causes the 
initiation of a second quench front (i.e. the THQB 
front) because of the additional Joule heating. By 
fixing our position on the THQB front and analyzing 
the behavior of the helium ahead of this front it is 
possible to calculate the THQB propagation velocity. 
The calculation is made analytically tractable by util- 
izing two approximations. First, since THQB is fast 
compared to a standard quench, we can ignore the 
further evolution of the standard event. Second, since 
the current sharing and critical temperatures are often 
relatively close in value to the initial pre-quench tem- 
perature [i.e. (Tc~-- To)/To < (Tc~- To)/To < 1], the 
behavior in the THQB region can be obtained by a 
perturbation analysis. The details of the analysis are 
described in Section 5. 

4 .  N U M E R I C A L  R E S U L T S  

Consider the helium coolant in a CICC of length 
L located between 0 ~< x ~< L to be initially (t = 0) 
stagnant, with a uniform temperature To and density 
P0- At t = 0 a localized external heat perturbation 
Soxt of sufficient magnitude is applied, causing the 
temperature at x = L/2 to rise above T = T¢~, thereby 
initiating Joule heating. For t > 0 the quench is at first 
propagated by convection of the helium. At a certain 
time let, the compression of the helium just ahead 
of the front where S = 0, is sufficient to raise the 
temperature above T = Tc,. From this time forward 
the THQB propagation is governed by compression 
of helium ahead of the initial front. 

The time tcr has been derived in Ref. [8] and is given 
by 

=84(2dnvSo~rAcu pcCc ]3(Cv0 T~-- To'~ 5 
lcr " t,~JL~ RLqSJ \C,o To ) 

where Vs0 is the speed of sound in helium, Lq is the 
initial normal length of the standard quench, R is the 
gas constant, and Pc, Cc are the density and specific 
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Fig. 3(a) Conductor-helium temperature profile at various 
times during THQB, obtained from the numerical solution 

of equations (1)-(4). 
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Fig. 3(b) Helium density profile at various times during 
THQB, obtained from the numerical solution of equations 

(1)-(4). 

heat of the conductor. Note that for a given quantity 
Q(p, T), Qo = Q(po, To). Observe that tcr is a strong 
function of (Tc~-- To). A related expression has been 
previously derived by Dresner [10]. His result applies 
to the regime where the heat capacity behind the front 
is dominated by the helium whereas in our case, the 
conductor dominates. This apparently simple differ- 
ence leads to a significantly different scaling. 

To motivate the analysis of Section 5 consider the 
nonlinear, time dependent numerical solution of a 
typical THQB event. In Figs. 3(a)-(d) we plot the 
helium temperature, density, velocity, and pressure 
profiles at various times during a 2 s THQB in a CICC 
similar to that used in the International Thermo- 
nuclear Experimental Reactor (ITER) [11] with 
L = 500 m. These figures represent the numerical solu- 
tion of equations (1)-(4) obtained using the procedure 
described in [6]. The parameters of interest are 
dh = 5 x 10 -4 m and f =  0.08. The helium is initially 
stagnant (v = 0) with a temperature T = To = 5 K 
and a density p = P0 = 129 kg m -3. At t = 0 an exter- 
nal heat source of a short duration (~0.1 s) is 
deposited over a 2 m length at x = L/2, in order :o 
initiate the quench. The values of the transition tem- 
peratures are given by To, = 5.1 K, Tcr = 5.5 K, while 



Theory of thermal hydraulic quenchback 495 

5 i ~ i i 

, . t  

"-" 1 

> -1 

-3 

-5 L i ~ I 

0 1 O0 200 300 400 500 

X (m) 

Fig. 3(c) Helium w;locity profile at various times during 
THQB, obtained from the numerical solution of equations 

(1)-(4). 
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Fig. 4(b) Time evolution of normal length during a THQB 
with AT -= T¢~- To = 1 K, obtained from the numerical solu- 

tion of equations (1)-(4). 
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Fig. 3(d) Helium pressure profile at various times during 
THQB, obtained from the numerical solution of equations 

(1)-(4). 

length of the normal  zone 2Xq. After the onset of  
THQB, at t = /cr, the normal  front velocity quickly 
approaches a constant  value given by Xq = Vq ~ 100 
m s - l .  This value of Vq is approximately an order of 
magnitude larger than the maximum helium velocity 
in the conduit  [see Fig. 3(c)], while it is a factor of two 
smaller than the speed of sound in the helium. Also 
note that the value of t~r in this case is very short (i.e. 
t ,  ~ 0.01 s) and consequently the sharp transition 
between the standard quench and THQB is barely 
visible in Fig. 4(a). In order to demonstrate this tran- 
sition, we plot in Fig. 4(b) the time evolution of 2Xq 
for the case T~ = 6 K and To, = 6.4 K. In  this scenario 
tcr~O.4s ,  V q ~ 4 5 m s - l ,  and V q ~ 4 m s  -]. 

400  

E 
v 

X~ 200 
O4 

0 
0 0.4 0.8 1.2 1.6 2 

t (sec) 
Fig. 4(a) Time evolution of normal length during a THQB 
with A T -  = To--To = 0.1 K, obtained from the numerical 

solution of equations (1)-(4). 

the current density in the copper is J = 108 A m -2. 
Also, Ac = 6.1 x 10 -4 m 2, A~, = 3.9x 10 -4  m 2, and 
Ah = 4.5 x 10 -4 rn 2. Observe how the THQB front 
rapidly separates from the initial s tandard quench 
front in the vicinity o f x  = L/2 as shown in Figs. 3(a) 
and (b). During I 'HQB the boundary  layer at the 
location of the standard front is nearly stagnant. 

In Fig. 4(a) we present the time evolution of the 

5. A N A L Y S I S  

We now turn to the analysis. For  simplicity of pres- 
entation the case ( T , -  To)/To << 1 and T , -  To, ~ 0 is 
considered first in Section 5.1. In Section 5.2 the analy- 
sis is extended to cover all ranges of (Tcs-  To)/To. The 
effect of  finite T c r - T ,  on the quench propagation 
velocity is discussed in Section 5.3. Finally, modi- 
fications due to helium inertia are considered in Sec- 
tion 5.4. 

5.1. The case ( T , - T o ) / T 0  << 1 
Due to the symmetry of the problem only the region 

x >i L/2 needs to be treated. We define a new coor- 
dinate system moving with the THQB front:  
z = ( x -  L/2) - Vqt, where Vq = const is the velocity of 
the THQB normal front and is at this point  unknown.  
Note that by construction, z = 0 is the location of the 
normal front. That  is, T(z = O) =- Tcs. In  this coor- 
dinate system equations (1)-(4) can be written as 

~P + ( v -  Op ~v 
a--t Vq) ~-z + P ~ z  = 0 (7) 

ap fpv  Iv[ 
(8) 

az 2dh 
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aT r~ ) a r  
pCt~  +p(Cvv-Ct q ~Z 

av ,~ ~, . fplvl v 2 
+ p G r ~ z  = o m - ~ +  T ~  " (9) 

For THQB, in general Vq >> v, and the quench front 
is propagating into the region where the helium is 
nearly stagnant. Since (T~s-To)/To ~< 1, the helium 
temperature in this region is nearly the same as that 
of the background To. Similarly the density is approxi- 
mately P0- Therefore, for z >~ 0 the following expan- 
sion is introduced to simplify equations (7)-(9) 

T = To + TI (z, t) (10a) 

P = P0 +P,  (z, 0 (10b) 

v = v 1 (z, t) (10c) 

where for a given quantity Q we have Q~/Qo ~ e. Here, 
- (To~- To)/To < 1. Also, we simplify the functional 

dependence o f / 7 ( T -  T,) by replacing it with an exact 
Heaviside function H ( T -  T, ) .  In many practical cases 
( T , -  T¢~)/(T~- To) < 1, justifying the approxi- 
mation. The effect of finite ( T ~ -  T J / ( T ~ -  To) is dis- 
cussed in Section 5.3. 

Before proceeding, note that the zeroth order vel- 
ocity component has been assumed to be zero. This is 
valid for sufficiently 'long coils' in which at the start 
of THQB the helium ahead of the front is unaffected 
by the ends and thus is nearly stagnant. The specific 
criterion for this to be valid is given by 
L 2 >  24dhv~ot~/fVq~(t~r), where Vqs is the standard 
quench propagation velocity for t < t ,  given by the 
analytic results of [7]. Note that Vq~(t~) is generally 
much less than the value of Vq once THQB has been 
initiated [see Fig. 4(b)]. The leading order equations 
(7)-(9) can now be rewritten as 

~Pl c~pl avl 
c~ t Vq-ffZ +po--~-z = 0 (11) 

OT1 ~ ~ OPl fPo 2 
poC#o~zJ "~-jO('~O ~-Z- ~ h  z)I (12) 

OTl ~T1 Ova 
p o G r o m -  -poC~oVq ~ -  z + poC#oTo ~ z  = S H ( - -  z) 

(13) 

where C~ - ( l /T)  Op(p, T)/Op, and for a given quan- 
tity Q, Qo =- Q(po, To). Observe that we have replaced 
Ct by the helium specific heat Cv in equation (13). In 
the region ahead of the front (z ~> 0), T ~ To and since 
typically To < 20 K the helium contribution domi- 
nates C,. Despite the expansion used, equations (11)- 
(13) are still non-linear because of the friction force; 
that is, the hydraulic diameter is sufficiently small 
so that friction dominates inertia. For  mathematical 
consistency we thus assume dhS/fpoV~ ~ e 2, and 
(v~/Vq) ~ e. Note that the frictional heating is a second 
order term and therefore does not appear in the energy 
equation. 

To proceed we look for the steady state solution of 
equations (11)-(13) given by 

Vq~zl dvl 
- + p 0 ~ -  z = 0 

dTl dpl 
poC~o ~-z + ToC~o dz 

dTl dvj 
-- Vqp°C~°~-z + P°C#°r° dzz 

(14) 

f f l0  2 ~hUl (15) 

= S H ( -  z). (16) 

These equations can be cast into a more useful form 
by introducing normalized variables as follows : 

- z/l  (17) 

u - v,/Vq (18) 

where the scale length l is defined as 

2dh v~0 
l =  (19) 

f Vq z 

and v~0 = To(C~o + C~o/Cvo) is the square of the sound 
speed. A simple calculation transforms equations 
(14)-(16) into a single equation for u and two sub- 
sidiary relations giving T~ and Pl in terms of u. 

du 
d~ + u2 = ~2H(-- ~) (20) 

_d du 
de \Po] = ~ (21) 

Here, Cpo = Cvo + C~o/C~o is the specific heat at con- 
stant pressure and a2 is defined as 

c~0 S ~2 ~ (23) 
Cvo (f/Zdh)po V3q " 

The parameter :¢2 = cd(Vq) is a nonlinear eigenvalue, 
which when evaluated determines the THQB propa- 
gation velocity Vq. 

Equations (20)-(22) must be solved subject to the 
following boundary conditions 

[•1,P,, Tl]z_L- Vqt~ --~ 0 (24) 

[vl , Pl , Tl]~=_v, . . . .  ~ standard quench solution. (25) 

The eigenvalue condition determining cd requires that 

T~ 1~- 0 = To~ -- To -= A T. (26) 

Equation (24) implies that all perturbed quantities 
vanish far ahead of the THQB front. Equation (25) 
requires that the perturbed quantities match onto the 
standard quench solution far behind the THQB front. 
Equation (26) forces the temperature at the THQB 
front to equal the current sharing temperature, 
thereby defining the location of the THQB front. 

The solution is obtained as follows. Ahead of the 
front (i.e. ~ > 0), H( - -  ¢) = 0. The resulting equations 
can easily be solved yielding 
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1 
u - (27) 

C+C0 

Pl 1 
(28) 

Po C+~o 

Tl _ Cpo 1 
(29) 

To Cvo C+Co" 

Observe that the solutions satisfy the boundary con- 
ditions for ~ -~ oc. The parameter C0 is an integration 
constant which is evaluated using the eigenvalue con- 
dition 

1 Cvo AT 
~0 = ~ -~o" (30) 

Behind the front (i.e. ~ < 0) H ( - C )  = 1. Here too 
the solution can be easily obtained 

u = ~ tanh (aC + C1 ) (31) 

-P5 = ~ tanh (a~ + ~ )  (32) 
Po 

T 1 C ~ °  [~tanh (~  + ~,)-~2 Cp° ] 
To - Cv0 Cp0 - C~0 ~ (33) 

where Cl is an integration constant. In order for u, Pl 
and T1 to remain continuous across ~ = 0 we require 

1 
tanh Cl - G0' (34) 

The parameter ~ is in principle determined by 
matching equations (31)-(33) to the standard quench 
solution far behind the THQB front (i.e. at z ,~ - Vqt). 
This is a difficult and subtle issue. The difficulties 
are two fold. First, at the standard quench front the 
temperature quickly rises well above the background 
value To implying that the assumption T~ << To is no 
longer valid. Second, and more important, in the 
frame of the THQB front, the location of the standard 
quench front is rapidly receding away: z(standard 
front) ~ -  Vqt. This moving boundary raises the 
question of whether or not it makes any sense to even 
consider a steady state solution. 

The subtlety is that, while both of the above con- 
cerns are valid, they do not affect the determination 
of the THQB velocity. The reasoning is as follows: 
although we cannot explicitly determine ¢1, the value 
required to match to the standard quench solution 
can be shown to satisfy ~1 >> 1. This can be seen com- 
putationally in Fig. 5, obtained from a full nonlinear 
numerical solution of the THQB model. Illustrated 
here are profiles of v vs z in the THQB frame for 
different times. Observe that the solution ahead and 
slightly behind the THQB front are invariant (i.e. 
reach steady state), although they vary significantly 
near the standard quench front. To the extent that 
this assumption (Cl >> 1) is correct, then equation (34) 
reduces to 

1 
~ - -  (35) 

Co 

i i I i 

4 
t=2S 

-- ¢ 
g 
> 2 I'/~ 1 

0 
-80 -40 0 40 80 

z (m) 
Fig. 5. Helium velocity profile in z-coordinates during 
THQB, obtained from the numerical solution of equations 

(1)-(4). 

thereby determining the THQB propagation velocity. 
Note that under our assumption AT/To =-e << 1, 
equation (30) implies that ct oc AT~To << 1. 

The condition it >> 1 can be analytically deduced 
from equation (33). We expect matching to occur 
when the hyperbolic tangent term in equation (33) 
exhibits a significant change in its value ; that is, when 
C~ ~ ~l¢sl where ~, represents the characteristic dis- 
tance to the standard quench front. As stated, the 
temperature at ~, rises significantly above To once 
THQB is well established. A simple bound on ~s is 
thus obtained from equation (33) by balancing the 
second term on the right-hand side (the increasing 
term) with the left-hand side, setting TI ~ To. The 
result is 

--~2~s ~ 1 (36) 

which implies that ~1 ~ 1/~ >> 1. 
Under the condition ~1 >> 1, the profiles just behind 

the THQB front (¢ < 0) simplify to 

u ~ ~ (37) 

Pl 
- -  ~ ~ ( 3 8 )  
P0 

TI C3o[  Cpo ] 
To ~ ~ovo ct-~t 2 ~ . (39) Cpo - Cvo 

The THQB propagation velocity follows from 
equations (35) and (30) and in un-normalized units is 
given by 

Eft° ( 2dhax~x/3 ( T ° ~  2/3 (40) 
Vq = C~o \ fPo ) \AT] " 

This is the desired result. As expected, Vq increases 
with smaller temperature margin A T, or larger heating 
source S = (Acu/Ah)~loJ 2. Conversely, larger friction 
(f/dh) results in smaller Vq since the compression term 
is proportional to v, and larger friction results in smal- 
ler helium velocities. Also note that Vq does not equal 
the speed of sound Vs0, nor is it bounded by vs0 as 
would be expected on physical grounds. Thus, infinite 
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front-velocities are allowed, for example, in the case 
where A T ~ 0. This breakdown of the model results 
from the neglect of the inertial term and is discussed 
in Section 5.4. 

A final point of interest is to compare the THQB 
propagation velocity Vq to that of the standard quench 
velocity Vq~. A short calculation using the results of 
Ref. [7] yields 

~qqs~(L°S2/3~2/S(T°~ 2/3 (41) 
kLqS2/3j \ATJ 

where tq is the length of the initial (standard) quench 
zone and LoS 2/3 is a parameter given by 

G0 5/2 RT m 1/2 

x (Ac~ p~C~'~an ( ~ )  ~oR ] (42) 

Here, R is the gas constant, p~ and C~ are the density 
and specific heat of the conductor, and Tm is the 
maximum allowable temperature of the strongly 
heated zone behind the standard quench front. The 
quantity Tm appears because Vqs GQ t -t/5, and t has 
been chosen as t ~ tm ~ (Acu/Ah)p¢C~Tm/S, the time 
required for the hot zone to reach its maximum allow- 
able temperature. 

THQB is observed experimentally and com- 
putationally when the parameters are such that 
Vq/Vq~ >> 1. However, from equation (41) it is appar- 
ent that this inequality need not automatically be satis- 
fied. In fact, for sufficiently large LqS 2/3, Vq/Vqs ~ 1 
implying that THQB cannot be initiated. The expla- 
nation is that as Lq and S increase, the propagation 
velocity of the standard quench increases faster than 
that of THQB. Eventually Vqs exceeds Vq and the 
THQB front cannot break away. 

Interestingly, there is also a lower limit on LqS 2/3 
for the observance of THQB. For  sufficiently small 
LqS 2/3 the compressional heating is so small that the 
temperature behind the standard quench front reaches 
its maximum allowable value Tm before the onset of 
THQB. Consequently THQB can only be observed 
when t ,  < tm. An alternate interpretation is that in a 
sufficiently long coil THQB will always be excited if 
one waits long enough for T(z = 0  +) to com- 
pressionally heat to T~, provided that at this time T 
behind the front has not yet reached Tin; larger tm 
makes it easier to observe THQB. 

The two conditions just described define the 
approximate range of ZqS 2/3 for the appearance of 
THQB and can be expressed as 

/'ATe5/3 < K {" To ~2/3 
Kl~-~o ) <Lq $2/3 2 ~ )  

Kl = 2"6(C-~o~;o)5/3(v2s° ~l/3(AcuPcCc~2/3/A)'2"'6\l/3~-R~m/] \Ah ~oR,] Q ~ )  

K2 : 2,5 (Cfl0~5/2 (RTm~l/2 (Acu ~Pc~..¢]l ,~ \3/2 [~hy0~S0~/'A ~2,,6 \1/3 
\c 0; \ J \Ah p -J 

(43) 

To summarize, we have calculated the velocity of 
propagation of THQB [equation (40)] and the con- 
ditions under which it occurs [equation (43)]. In 
addition two approximations have been used which 
define the region of validity of the analysis. First, we 
have assumed AT/To << 1 in order to carry out the 
perturbation analysis. Second, we have assumed that 
L >> Vqtm to insure that the coil is sufficiently long so 
as to be unaffected by end effects. Next, we consider 
the modification to equation (40) when AT/To ~ 1. 

5.2. The case (Tcs-T0)/T0 ~ 1 
Equation (40) is valid in the limit AT/To << 1. In 

practice, this parameter can sometimes be as large as 
0.5. Thus, while (40) remains qualitatively correct for 
larger AT/To, its quantitative value becomes pro- 
gressively less accurate. It would be clearly useful to 
have a more accurate value for comparison with 
experiments and numerical simulations. In this regard 
the previous analysis can be re-derived for the full 
nonlinear equations including convection and fric- 
tional heating. The analysis is slightly tedious, but 
if one assumes that AT~To is small, the first-order 
correction to equation (40) can be calculated ana- 
lytically. The result is 

C,o f2dhS~ '/3 ( To \2/3 [ .  _ ATk 
Fq = ~ f ~ 0  ~ ~ )  ~ 1 -~--/~ ~-0 ) (44) 

where 

Cv0 Cpo _2[Oln(C~o/C~o)] 
K = 2 + C~o + Cpo - Cvo -~ ln~o ~" 

(45) 

Note that the derivative in equation (45) is carried out 
at fixed entropy S. 

5.3. Effect of finite Tcr--Tes 
The derivation of the THQB propagation velocity 

assumes that (Tc~-To)/To<l and (T~r-To)/ 
(T~s-- To) ~ 0. The first condition is often well satisfied 
experimentally. The second condition is more prob- 
lematic, but has been used anyway for mathematical 
simplicity. In this section we extend the previous 
analysis to include finite (Tcr- To)/(Tcs-- To). 

The analysis ahead of the surface T = T~s and 
behind the surface T = T~r are the same as in Section 
5.2 since the equations remain unchanged in these 
regimes. What we require now is a solution in the 
intermediate region T ,  < T < T~r. By properly match- 
ing at both ends we obtain a more general expression 
for Vq. 

In the intermediate region one can easily derive, 
from equations (20) and (22), a differential equation 
relating v to T assuming the transition source function 
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H(T-T~s) is linear in T, as shown in Fig. 2. This 
equation is given by 

dw AT* 1- w2--flz~O l (46) 
d~k AT [_wZ+(c--1)flz•J 

where the new normalized quantities are defined as 
W = ~oU, ¢ = (T~--AT)/AT*, fl = ~t¢o, AT*= 
T,-T¢~ and c = Cpo/(Cpo-C~o). The normalizations 
have been chosen so that 0 ~< ~ ~< 1 and at ~b = 0, 
w(0) = 1. The eiLgenvalue condition determining B 
requires that at ~b = 1, w(1) --- ft. 

Equation (46) has been solved numerically for given 
values of AT*/ATand c to obtain ft. The result, in un- 
normalized units is an expression for Vq of the form 

To 2 / 3  Cfl°('2dhS~'/3(~ 1 ~(ar" C). ( 4 7 )  

V q = ~ o l f p  0 /  \ A T '  

The function F i s  plotted in Fig. 6 as a set of universal 
curves. Observe that the basic scaling dependences of 
Vq remain unchanged, but that there are important 
quantitative changes in its magnitude as AT*/AT 
varies. These corrections are necessary when com- 
paring with either experimental or numerical simu- 
lations in which A T*/A T is often finite. 

Equation (47) can be easily modified to approxi- 
mately include the additional finite AT/T o corrections 
as follows : 

C~o ['2dhS'\]/3 / To~2/3 f 1 K A T \ F / A T  * 
Vq : t-- o ,) t-S- J t ÷ ) 

(48) 

Equation (48) is used later to compare with the 
numerical results. 

The combined effects of the finite AT and AT* 
corrections are illustrated in Fig. 7 where we have 
plotted Vq vs AT for various AT* corresponding to 
the ITER-like coil. Observe that for small AT the 
AT*/AT corrections are important, but the KAT/To 
corrections are by definition negligible. Conversely, 
for larger AT, the KAT/To corrections become impor- 
tant, but as seen by the convergence of the curves, the 

AT*/AT corrections become unimportant. Conse- 
quently, for any given set of parameters, one or the 
other correction may be dominant, but not both 
simultaneously. 

5.4. Inertial effects 
As has been previously noted, the value of Vq ~ oo 

as S ~  oo or AT---,0. Realistically, we expect some 
change in the physics to occur when Vq g V,o, pre- 
venting Vq from increasing without bound. In this 
section we include inertial effects and show that for 
physical solutions to exist Vq < vs0. 

Within the context of the perturbation analysis, the 
effect of inertia modifies the steady state momentum 
equation [equation (15)] as follows: 

_ d v l  ~ dT1 dpl fPo 2 

P°Vq~z+P°t~°~-z  + T°C'° dz = 2dh vl" 

(49) 

The first term is the inertial correction. The equivalent 
normalized equations [equations (20)-(22)] now have 
the form 

1 -  V~'~du 2 +u = (50) 

d ( p , )  du 
Po = d~ (51) 

1 To = co 0 H ( - ¢ ) .  (52) 

The only modification from the original equations is 
the (1 - V2/v2o) coefficient in equation (50). 

Following the analysis in Section 5.1 we again cal- 
culate the eigenvalue ct 2. Remarkably, in the simple 
limit AT* ~ 0, the value of a2 is unchanged from the 
case where inertia is neglected: ct = (Cvo/C~o)(AT/To). 
However, the functional dependence of u ahead of the 
THQB front is modified as follows 

1 2 2 - -  V q / / ) s 0  
u = ~ + ( 1  2 2 " (53) 

- Vq/v~o)~o 
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Observe that when Vq: < v~:0 the solutions are well 
2 the denominator vanishes behaved. For V 2 > vs0, 

for ~ 2 2 = (Vq/v ,o -  1)~0 > 0 indicating non-physical 
behavior. 

The conclusion is that the value of Vq given by 
equation (40) is correct and independent of inertia as 
long as Vq 2 < v20 (i.e. when S / A T  2 is sufficiently small). 
If S l A T  2 is increased above the value that gives 
Vq = Vso, a shock-like solution develops. The velocity, 
temperature and density develop jumps across the 
THQB front which is thereafter constrained to move 
at V~o. This regime is generally not the normal operat- 
ing regime of most CICC magnets. 

6. DISCUSSION 

Consider the conductor discussed in relation to 
Figs. 3 and 4. For this conductor we compare the 
analytic results with the numerical solution of equa- 
tions (1)-(4). Recall that for this case AT* = 0.4 K, 
T o = 5 K ,  p 0 = 1 2 9 k g m  - 3 , C v 0 = 2 5 2 2 J k g  - I K  -l,  
C~0=3344 J kg -l  K -l,  d h = 5 x l 0  -4 m , f = 0 . 0 8 ,  
S = 6.8 x 106 W m -3, c = 2.1 and K = 2.18. In Fig. 8 
we plot Vq as a function of AT. The analytic solution, 
given by equation (48), is in good agreement with the 
numerical results. Note that approximately 10 h of 
CPU time was required on an Alpha station (DEC 
3000/600) to obtain the computational data presented 
in Fig. 8. This relatively large computational cost is a 
result of needing to resolve two moving boundary 
layers at the location of the THQB and standard 
quench fronts (see Fig. 3). Relative to the length of 
the channel, the layer-width at the THQB front is 
~ 1% (see Fig. 5). 

In Fig. 9 we plot Vq vs I for the case AT = 0.1 K 
and AT* = 0.4 K. Here, I is the conductor current 
given by I = Ac,J. Again, we observe good agreement 
between the numerical and analytic results. 

Due to preliminary nature of experiments, we 
cannot compare the THQB theory developed here 
with any detailed experimental data. A challenging 
future step to further investigate THQB is to perform 
careful experiments where Vq is measured and corn- 

pared to the results of the paper. An important factor 
in performing such a task is to keep in mind that 
the results obtained here apply to 'long coils' where 
compressional heating is the dominant factor 
governing THQB (this is the main case of interest 
corresponding to large scale superconducting mag- 
nets with L 2 >24dhVZotcr/fVqs). In short coils 
(L: < 24dhVZotcr/fVqs), the frictional heating governs 
both the initiation and the propagation of THQB [8], 
and the propagation velocity is equal to the sound 
speed in helium. To estimate the transition value of 
L2/dh from a short to a long coil, consider typical 
values of v,0 ~ 200 m s -l ,  Vqs ~ 1 m s - ] , f ~  0.08 and 
tcr ~ 1 s, which results in L2/dh ,~ 107 m. In a long coil 
experiment, L2/dh must be greater than this transition 
value. 

In conclusion, we have presented an analytic theory 
for the process of THQB in large scale super- 
conducting magnets made of CICC. The analytic solu- 
tion for the quench propagation velocity is in good 
agreement with numerical results, where various scal- 
ing relations have been compared. Also, Vq is shown 
to be governed by the temperature margin AT, Joule 
heating qoJ 2, and friction dh/f In general, Vq is 
observed to be much greater than the helium velocity, 
while its value is substantially below the sound speed. 
Future experiments are required to further verify the 
results presented in the paper. 
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